Tag: aprendizaje automático

  • Os recomendamos un framework de Machine Learning de código abierto y multi-plataforma para C#
  • ML.NET ofrece la posibilidad de agregar el aprendizaje automático en aplicaciones de .NET, ya sea en escenarios on line o sin conexión

machine learning mlnet

¿Qué es ML.NET?

ML.NET ofrece la posibilidad de agregar el aprendizaje automático en aplicaciones de .NET, ya sea en escenarios on line o sin conexión. Con esta funcionalidad, es posible realizar predicciones automáticas usando los datos disponibles para la aplicación sin tener que estar conectado a una red.

Aprendizaje automático en ML.NET, ¿qué predicciones puede hacer?

Algunos ejemplos del tipo de predicciones que puede hacer con ML.NET son los siguientes: 

  1. Clasificación y categorización. Por ejemplo, clasificar automáticamente los comentarios de clientes en positivos y negativos
  2. Valores continuos de regresión y predicción. Por ejemplo, predecir el precio de la vivienda según el tamaño y la ubicación
  3. Detección de anomalías. Por ejemplo, detectar fraudes en transacciones bancarias
  4. Recomendaciones. Por ejemplo, realizar sugerencias de productos al consumidor on line en función de sus compras anteriores

ML.NET ofrece Model Builder (una herramienta de interfaz de usuario simple) y ML.NET CLI para que sea muy fácil crear modelos de aprendizaje automático personalizados. Estas herramientas utilizan Automated ML (AutoML), una tecnología de vanguardia que automatiza el proceso de creación de modelos con el mejor rendimiento para su escenario de Machine Learning. Lo único que se necesita es cargar tus dato y AutoML se encarga del resto del proceso de construcción del modelo.

¿En qué se caracteriza ML.NET?

  • Extendido con TensorFlow y otros..  ML.NET ha sido diseñado como una plataforma extensible para que se pueda consumir otros framework de aprendizaje automático populares tales como TensorFlow, ONNX, Infer.NET, entre otros; y tener acceso a más escenarios de machine learning, como clasificación de imágenes, detección de objetos, etc.
  • Alto rendimiento y precisión. Utilizando un conjunto de datos de revisión de Amazon de 9GB, ML.NET entrenó un modelo de análisis de sentimientos con un 95% de precisión. Otros framworks de aprendizaje automático populares no pueden procesar el conjunto de datos debido a errores de memoria. La capacitación en el 10% del conjunto de datos, para permitir que todos los framworks completen la capacitación, ML.NET ha supuesto la mayor velocidad y precisión.

¿Quieres saber más? Puedes consultar todos los tutoriales, ejemplos de código, referencia de API y otra documentación en la web de docs.microsoft.com

La inteligencia artificial en la actualidad juega un papel importante en nuestra vida cotidiana; desde nuestros teléfonos inteligentes (smartphones) a otros dispositivos electrónicos como neveras inteligentes. La tecnología nos ha proporcionado oportunidades de cambiar nuestro modo de vida tanto en el trabajo como al hacer la compra, consumir energía, etc.

La  tecnología se vuelve, cada vez más, más inteligente y con capacidades múltiples: procesamiento de lenguaje natural, visión artificial, sistemas de recomendaciones, entre otros. Sin embargo, pese a que la inteligencia artificial y las máquinas se hayan convertido en parte de la vida cotidiana, esto no significa que las entendamos bien. Por este motivo queremos explicar qué diferencias existen entre Inteligencia Artificial (IA), Machine Learning y Deep Learning para entender mejor el entorno en el que se construye a nuestro alrededor con estas tecnologías inteligentes.

Qué es Inteligencia Artificial

En computación, la Inteligencia Artificial se trata de programas o bots diseñados para realizar determinadas operaciones que se consideran propias de la inteligencia humana. Se trata de hacer que éstos sean tan inteligentes como un humano. La idea es que perciban su entorno y actúen en base a ello, centrado en el auto-aprendizaje y que sean capaces de reaccionar ante nuevas situaciones.

El sueño de los pioneros en Inteligencia Artificial era construir máquinas complejas, habilitadas por computadoras emergentes, que poseyeran las mismas características de la inteligencia humana. Este es el concepto que consideramos “genérico” de Inteligencia Artificial: maquinas fabulosas que tienen todos nuestros sentidos (tal vez incluso más), toda nuestra razón y piensan igual que nosotros.  Podemos poner ejemplos de este concepto en películas como Star Wars (C-3PO) o Teminator. Claro está que este concepto genérico de máquinas de IA sólo quedan en el imaginario del cine y de novelas de ciencia ficción por una buena razón: no podemos llevarlo a cabo, por ahora.

imagenes similares pinterest

Imágenes similares en Pinterest

Sin embargo, sí existen en la actualidad tecnologías que pueden realizar tareas específicas que normalmente requieren inteligencia humana, como la percepción visual, el reconocimiento de voz, la toma de decisiones y la traducción entre idiomas. Algunos ejemplos de este tipo de Inteligencia Artificial, en la actualidad, son cosas como la clasificación de imágenes similares en Pinterest o Google Images y el reconocimiento facial en Face ID en  iPhone.

Estos son claros ejemplos de Inteligencia Artificial que exhiben algunas características de la inteligencia humana. Pero, ¿cómo lo hacen? ¿De dónde viene esa inteligencia? Eso nos lleva al siguiente concepto, Machine Learning.

Qué es Machine Learning

Machine Learning o aprendizaje automático es un subconjunto de Inteligencia Artificial en el campo de la informática que a menudo utiliza técnicas estadísticas para dar a las computadoras la capacidad de “aprender” (es decir, mejorar progresivamente el rendimiento en una tarea específica) con datos, sin estar explícitamente programadas.

En otras palabras, el aprendizaje automático en su forma más básica es la práctica de usar algoritmos para analizar datos, aprender de ellos y luego hacer una determinación o predicción sobre algo en el mundo. Por lo tanto, la máquina está “entrenada” utilizando grandes cantidades de datos y algoritmos que le dan la capacidad de aprender a realizar la tarea por sí misma.

El aprendizaje automático vino directamente de las mentes de los pioneros en Inteligencia Artificial. Resultó que una de las mejores áreas de aplicación para el aprendizaje automático, durante muchos años, fue la visión por computadora, aunque requería una gran cantidad de codificación manual para hacer el trabajo. La gente entraba y escribía clasificadores codificados a mano, como filtros de detección de bordes, para que el programa identificara dónde se inició y se detuvo un objeto; detección de forma para determinar si tenía ocho lados; o  un clasificador para reconocer las letras “S-t-o-p”. De todos los clasificadores codificados a mano, desarrollarían algoritmos para dar sentido a la imagen y “aprender” a determinar si era una señal de Stop, especialmente en un día de niebla cuando el cartel no es perfectamente visible o un árbol oscurece parte de él. Hay una razón por la que la visión por computadora y la detección de imágenes no se acercan a rivalizar con los humanos. Hasta hace poco, era demasiado frágil y propenso al error. Con el tiempo, los algoritmos de aprendizaje se corrigieron y marcaron una diferencia; esto nos lleva al siguiente concepto, Deep Learning.

Qué es Deep Learning

Deep Learning o aprendizaje profundo es una técnica dentro del machine learning basado en arquitecturas neuronales. Un modelo basado en deep learning puede aprender a realizar tareas de clasificación directamente a partir de imágenes, texto o sonido, etc. Sin necesidad de intervención humana para la selección de características. Esto se puede considera la principal ventaja del deep learning, llamada “feature discovering”. Pueden, además, poseer una precisión que supera a la capacidad del ser humano.

El aprendizaje profundo es un subconjunto de aprendizaje automático en Inteligencia Artificial (AI) que tiene redes capaces de aprender sin supervisión a partir de datos que no están estructurados ni etiquetados. También conocido como Deep Neural Learning o Deep Neural Network. Aquí es donde reside la gran diferencia respecto al Machine Learning.

Las Redes Neuronales Artificiales se inspiran en nuestra comprensión de la biología de nuestros cerebros, todas esas interconexiones entre neuronas. Pero, a diferencia de un cerebro biológico donde cualquier neurona se puede conectar a cualquier otra neurona dentro de una cierta distancia física, estas redes neuronales artificiales tienen capas discretas, conexiones y direcciones de propagación de datos.

Pueden, por ejemplo, tomar una imagen, cortarla en un grupo de teselas que se ingresan en la primera capa de la red neuronal. En la primera capa, las neuronas individuales pasan los datos a una segunda capa. La segunda capa de neuronas hace su tarea, y así sucesivamente, hasta que se produce la última capa y producción final. Cada neurona asigna una ponderación a su entrada: qué tan correcta o incorrecta es en relación con la tarea que se realiza. El resultado final se determina luego por el total de esas ponderaciones.

Por ejemplo, imaginemos de nuevo la señal de Stop. Los atributos de una imagen de una señal de stop son cortados y “examinados” por las neuronas: su forma octogonal, el color rojo de su motor de bomberos, sus letras distintivas, el tamaño de su señal de tráfico y su movimiento o falta de ella. La tarea de la red neuronal es concluir si esto es una señal de Stop o no. Se trata de un “vector de probabilidad”, realmente una suposición altamente educada, basada en la ponderación.

google self driving

Self-driving car de Google

El Deep Learning ha permitido muchas aplicaciones prácticas de Machine Learning y, por extensión, el campo general de Inteligencia Artifical. El aprendizaje profundo desglosa las tareas de manera que hace que todo tipo de asistencia en máquinas parezca posible, incluso probable. Los automóviles sin conductor, una mejor atención médica preventiva, incluso mejores recomendaciones de películas, son claros ejemplos de aplicación. La Inteligencia es el presente y el futuro. Con la ayuda de Deep Learning, la Inteligencia Artificial puede llegar a ese estado de ciencia ficción que tanto tiempo hemos imaginado con Star Wars y Terminator.

En la última década, las empresas están utilizando el aprendizaje profundo para resolver los desafíos a nivel empresarial. Desde la detección de rostros (Face ID) hasta recomendaciones de productos, segmentación de clientes, reorganización de dígitos, traducción automática, inteligencia de negocios, Internet de las cosas, seguridad de redes, etc. El uso del  deep learning  y machine learning han transformado por completo el mundo en el que vivimos hoy.

Fuente: https://hackernoon.com/top-differences-between-artificial-intelligence-machine-learning-deep-learning-d39cb6f6feaa

 

0

Knowledge Discovery in Database

Data Mining (minería de datos) es también conocida como Knowledge Discovery in database (KDD). Es comúnmente definida como el proceso para descubrir patrones útiles o conocimientos a partir de fuentes de datos tales como Bases de Datos, textos, imágenes, la web, etc.  Los patrones deben ser válidos, potencialmente útiles y entendibles. La minería de datos es un campo multidisciplinar que incluye: aprendizaje automático, estadísticas, sistemas de base de datos, inteligencia artificial, Information Retrieval, visualización de la información, … El objetivo general del proceso de minería de datos consiste en extraer información de un conjunto de datos y transformarla en una estructura comprensible para su uso posterior. Existen muchas técnica dentro de data mining. Existen muchas tareas de data mining. Algunos de los más comunes consisten en el aprendizaje supervisado, aprendizaje no supervisado, minería de asociación de reglas y minería de secuencia (1).

En resumen, la minería de datos es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto.

10 VENTAJAS  DEL USO DE MINERÍA DE DATOS

  1. La minería de datos descubre información que no se esperaba obtener. Como muchos modelos diferentes son usados, algunos resultados inesperados tienden a aparecer. Las combinaciones de distintas técnicas otorgan efectos inesperados que se transforma en un valor añadido a la empresa.
  2. Enormes bases de datos pueden ser analizadas mediante la tecnología de data mining.
  3. Los resultados son fáciles de entender: personas sin un conocimiento previo en ingeniería informática pueden interpretar los resultados con sus propias ideas
  4. Contribuye a la toma de decisiones tácticas y estratégicas para detectar la información clave
  5. Te permite encontrar, atraer y retener a los clientes. Reduce el riesgo de perder clientes: ofrecer promociones especificas o productos especiales para retenerlos.
  6. Mejora la relación con el cliente: la empresa puede mejorar la atención al cliente a partir de la información obtenida.
  7. Permite ofrecer a tus clientes los productos o servicios que necesitan.
  8. Los modelos son confiables. Los modelos son probados y comprobados usando técnicas estadísticas antes de ser usado, para que las predicciones que se obtienen sean confiables y válidas.
  9. En su mayoría, los modelos se generan y construyen de manera rápida. El modelado a veces se torna más fácil puesto que muchos algoritmos han sido probados previamente.
  10. Abre nuevas oportunidades de negocios y ahorra costes a la empresa.

Sin embargo, también existen pequeños inconvenientes en el uso de técnicas de minería de datos, tales como:

  • La dificultad de recopilación de los datos. Dependiendo del tipo de datos que se quieran recopilar puede conllevar mucho trabajo.
  • Aunque cada vez menos, el requerimiento de una gran inversión también puede considerarse un inconveniente. En ocasiones, las tecnologías necesarias para llevar a cabo la recopilación de datos, no es tarea sencilla y consume muchos recursos que podrían suponer un coste elevado.

¿Quieres saber más sobre Data Mining o Minería Web?

Te recomendamos que eches un vistazo a estas dos publicaciones en nuestro blog:

O también, puedes leer este libro, como parte de la bibliografía consultada para este post: (1) LIU, BING (2007): WEB DATA MINING Exploring Hyperlinks, contents and usage data. Berlín: Ed. Springer Science & Business Media.